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PURPOSE:  The field data collection program consumes a major portion of a modeling budget.
However, due to instrumentation adjustment and failure, the obtained data could be incomplete
or producing abnormal recording curves. For instance, complete boundary condition data are
often critical to the numerical modeling effort.  The data may be unavailable at appropriate
points along the computational domain when the modeling design work changes.  In addition, the
key locations, which usually have high gradient variation in the numerical model, could be
partially missing. Therefore, the judgment of engineering design will lose its reliability if
sufficient measurement is not available for those points.  The problem of estimation of temporal
and spatial variation as described requires more advanced techniques to solve both time-delay
and nonlinearity features.  In this note, ANNs are used to address the missing data recovery
problem for the data collection activities for a tidal lagoon, Biscayne Bay in Florida, USA.

BACKGROUND:  The use of modern computing techniques including soft computing and
numerical models and their integration has become commonplace in managing water resources
projects.  While the latter methodology has been popular to address the physical phenomena, the
former technique is paid less attention by the researchers.  The main advantages of using
numerical models are based on their capability of prescribing the physical laws in the modeling
domain.  However, their accurate usage often requires extensive computational resources and
validation using extensive field measurements, and many system parameters need to be
estimated, particularly for large-scale and complex systems.  Hsieh (1997) has proposed a
framework design of flow model validation using the integration method of numerical model,
stochastic filter, and system simulation techniques.  This note presents an application to address
the missing data recovery problem in that design.
  
ANNs modeling techniques to solve tidal hydraulic problems are a relatively new area (Dibike
and Abbott 1999; Tsai and Lee 1999).  ANNs are able to solve problems in a way that resembles
human intelligence (Khonker et al 1998).  It learns by examples.  In the sense that observations
provide knowledge, they are able to capture the knowledge within a data set.  Unlike traditional
artificial intelligence and statistical solution approaches, ANNs are able to solve problems
without any prior assumptions.  As long as enough data are available, a neural network will
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extract any regularities or patterns that may exist and use it to form a relationship between input
and output.  ANNs have probably become the most efficient tools for generalization problems.
The technique is also able to provide a map from one multivariable space to another through
training, even when given a set of data with noise.  These properties make ANNs well suited to
problems of estimation and prediction for flow phenomena.  Usually, the data set is divided into
training, cross-validation, and testing portions.  The training part is used to identify the optimal
weights to bridge the input/output series while the cross-validation is used to monitor the training
process to avoid over-training.  The testing part is used to examine the performance of the ANNs
so it is not used in the training process.

The most popular ANNs algorithm is the classical multi-layer perceptron (MLP) model.  MLPs
(Figure 1) are feed-forward neural networks trained with a standard backpropagation algorithm.
This is a topology of ANNs with eight inputs, one hidden layer (three nodes), and one output
system. They are supervised networks, so they must be trained for the desired response.  They
can learn how to transform the input data into the desired response if sufficient patterns are
present in the training data set.  With one or two hidden layers, an MLP can approximate the
performance of optimal statistical classifiers in difficult problems.  Two other two algorithms,
namely time-lagged neural networks (TDNN) and recurrent neural networks (RNN) are more
powerful algorithms to solve time-series forecasting and prediction problems requiring the
capability of addressing time-delay problems.

Figure 1. Fully connected feed-forward network with one hidden layer and output layer

DATA RECOVERY SYSTEM (DRS):  The DRS for missing data is based on the transfer
function (response function) approach.  The identification of system response is constructed by
the training and cross-validation processes of learning from a common period between input and
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output series for ANNs.  The testing portion (performance), which is not involved in the training,
is used to compute the simulated output from additional input series.  The simulated output using
optimal weights from the best fit activation function (transfer function) can generate a recovered
data series.  This series is called the missing window.  Three types of DRS are defined as
follows:

1.   Self-recovery.  This type of recovery is based on a single time-series itself.  In this situation
no other series can be used as the reference to create the response bridge.  The method is to break
a long time-series into two portions.  The first part of the data is considered as the input, and the
second part is regarded as the output function and contains the missing window.  Longer time
series training data sets that contain more significant patterns are critical for output performance.

2.  Neighboring station recovery.  This is the most typical recovery case.  Obviously, the local
recovery should have better performance than the remote recovery.  If the involvement between
input and output functions is a different parameter, this recovery is classified as the different
parameter recovery.  Otherwise, it is called the same parameter recovery.

3.  Multivariate parameter recovery.  Since the system response from input to output could
involve more than one variable and receive different time delay, this more complex system
requires physical cause and effect to identify the system structure.  For example, the salinity
variation for a particular location could be caused by the source tide, local wind, and nearby
freshwater inflow for an estuary system.

STUDY AREA AND FIELD DATA COLLECTION PROGRAM: Pratt et al (in preparation)
summarizes the field data collection program for the Biscayne Bay, a shallow, subtropical
marine lagoon located on the southeast coast of Florida.  It covers approximately 100 kilometers
from north to south and varies from less than 1.6 kilometers to 13 kilometers in width.  It is
bordered on the west by the South Florida mainland and on the east by a series of barrier islands
and shallow, vegetated mud banks.  The developed data sets and numerical models that can aid
in the study and management of Biscayne Bay include circulation, salinity, and water quality.
Bathymetry and geometry of the navigation channels, interconnecting canals and inlets,
astronomical tide-induced currents, wind-induced currents, and freshwater inflow are major
factors that determine circulation patterns.

The purpose of the field data collection program was to provide hydrodynamic results including
velocities, flow distributions, circulation patterns, water levels, salinities, and meteorological
measurements during long-term monitoring and short-term intensive surveys.  The long-term
monitoring equipment used to collect the data consisted of 5 bottom-mounted Acoustic Doppler
Profiler (ADP) velocity meters, 12 water-level and salinity recorders, and 1 meteorological
station within the study area.

KNOWLEDGE BASE AND ANNs MODELING:  To perform the data recovery system, a
number of stations with 15-min intervals during February 1998 were used to conduct the
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analysis.  To identify the performance of ANNs, a week of data was purposely hidden to
compare the simulation results. This recovery information is called the missing window in the
system.

For the hydraulic engineering applications, the backpropagation networks, the time-delayed
networks, and the recurrent networks are used to perform the comparisons.  The best
performance was found to be partially recurrent networks.  This paper, unless indicated
otherwise, will use the recurrent network to demonstrate the results.  The software used for this
study is NeuroSolutions (version 3.02).  The data set is divided into training (2 weeks), cross-
validation (1 week), and testing (1 week) portions.  The performance analysis is represented by
several quantity statistical numbers, including mean square error, normalized mean square error
(NMSE), mean/maximum/minimum absolute errors, and correlation coefficient (CC).

 The following parameters are used to perform most of the recurrent networks:
          Input Layer

AF=TDNN Axon
Depth in samples=10

            HL PE’s= 2
AF=Linear Axon
Learn Rule=Momentum
Step Size=1.0

            Momentum Factor=0.7
         Hidden Layer (HL)=1
         Output Layer

AF=Linear Axon
Learn Rule=Momentum
Step Size=0.1

            Momentum Factor=0.7
         Maximum Epoches=1000

RESULT DEMONSTRATION:

1.  Self- recovery of surface elevations.  Tidal stations in the bay entrance are sometimes used to
serve as the boundary condition for the numerical modeling study.  The experience shows this
application can avoid the iteration process for numerical modeling when the boundary condition
is not available.  The worst condition for the data recovery is that no other reference data set,
such as neighboring station, can be used to construct the response function.  Semi-diurnal,
diurnal, and neap-spring components dominate the harmonic constituents in the tidal system.  It
seems two months of surface elevations (two lunar cycles) are sufficient to construct the self-
recovery scheme.  The record can be divided into two parts: the first month’s data are assumed as
the input series (Figure 2a) and the second month’s data with missing window (Figure 2b) are
used as the output series.  Shaded portions of the figures represent missing windows.  The testing
process of ANNs modeling creates the estimation of the missing window.  Very good agreement
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(Figure 2c) was found from this missing window recovery result (CC=0.9716 and
NMSE=0.0996).

    Figure 2a.  Input series for surface elevation at lagoon entrance (ft)

                Figure 2b.  Output series for surface elevation at lagoon entrance (ft)
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    Figure 2c.  Self-recovery for surface elevation at lagoon entrance (ft)
                                        (missing window recovery (dashed line))
2.  Neighboring station recovery.  The first demonstration of this recovery was to use the tidal
station (tide8) (Figure 3a) to recover the partial missing record in a tidal station (tide9) (Figure
3b) which is 9.6 kilometers away.  This is the most typical tidal signal propagation problem due
to the friction effect.  The excellent performance (Figure 3c) was obtained by using the recurrent
ANNs (CC=0.9906 and NMSE=0.0205).  Using the surface elevation to recover the salinity
concentration at the same location (station 11) was the second application.  The poor results
(CC=0.5576 and NMSE=0.6950) were due to other forcing factors, such as wind stress,
freshwater inflow, and the local effect.

3.  Multivariate parameter recovery.  The tidal current is a very important parameter in the tidal
hydrodynamic system and is costly to collect.  The x-component wind stress (Figure 4a) and the
x-component of current in station 3 (Figure 4b) receive signals from the ocean tide (station 9
from 6.4 kilometers away).  The data recovery for this case is shown in Figure 4c.  Except for the
small short periodic variation, the results show very good pattern match.

RECOVERY RELIABILITY:

1.  Due to physical forcings as input.  As in the previous analysis, the reliability of data recovery
also depends on the selected parameter and how well the forcing functions are included as the
model input.  A comparison (Table 1) addresses the reliability of tidal current recovery due to
physical processes, namely, tidal forcing, surface slope, and related physical parameters.  While
tidal current due to the surface slope between two neighboring surface elevation shows the best
results, two other approaches also obtain very high correlation.  The main source of errors comes
from small-scale variation.  This could be caused by any other local effect or other physical
parameters not addressed well enough.  The results show that the wind stress contributes only
very minor improvement for the analysis.  This is probably because the effects of the wind stress
are longer duration (sample depth) than the tidal forcing.  A further analysis using mixture
networks to separate the input influence could be the alternative approach.

Table 1.  Reliability of tidal current recovery due to physical forcing parameters
(correlation coefficient and NMSE(cm/sec))

Input/Output                  Training                Cross-validation     Missing Window
Tide/Tidal Current           0.933(0.131)       0.935(0.126)         0.967(0.080)
Surface Slope/Current           0.944(0.110)      0.943(0.111)         0.972(0.069)
Tide;Wind/Current            0.936(0.126)      0.939(0.118)         0.968(0.077)
Wind/Current                        0.105(0.988)      0.104(0.994)         0.100(0.995)
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              Figure 3a. Input series for surface elevation within the lagoon (ft)

             Figure 3b.  Output series for surface elevation at lagoon entrance (ft)

            Figure 3c. Neighboring station recovery for surface elevation at lagoon
               entrance (ft)  (missing window recovery (dashed line ))
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                     Figure 4a. Input series for surface elevation at lagoon entrance (ft) and wind stress (m/sec)

                  Figure 4b. Output series for tidal current in station 3 (cm/sec)

          Figure 4c. Multivariate parameter recovery for tidal current using surface
        elevation and wind stress as inputs (recovery – dashed line)
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2.  Due to missing window size.  An important objective for simulating the missing DRS is to
determine how the performance might be related to the size of missing window.  A comparison
was conducted by using a tidal current simulation example with missing window sizes of 100,
200, 300, and 600 values.  While the training data used the same length of record, the cross-
validation used less information when the missing window enlarged.  No significant differences
(Table 2) were found from both training and cross-validation (CC and NMSE).  The reliability of
missing data recovery gets lower as the window size gets smaller.  This unexpected result is due
mainly to the initial simulation having larger errors than the following time-steps.  When the
window size gets smaller, these errors contribute a higher percentage of total error to the overall
performance.  This suggests that, when the missing window gets very small, the simulation
window could enlarge the window in the beginning end (about 20 more time-steps from this
case).

Table 2. Recovery reliability of tidal current (tidal forcing and wind stress as inputs) due to
missing window size (correlation coefficient and NMSE (cm/sec))

Window Size      Training    Cross-Validation       Missing Window(Testing)
100                     0.955(0.088)       0.967(0.074)              0.880(0.246)
200                     0.955(0.088)       0.966(0.077)              0.926(0.146)
300                     0.953(0.093)       0.968(0.081)              0.946(0.108)
600                          0.954(0.090)       0.967(0.077)              0.957(0.084)

3.  Due to missing window location.  The main feature using ANNs is to recognize and learn the
historical patterns. Therefore, another critical issue for DRS is the reliability due to the missing
window location from the entire data set.  This is particularly important when the data length is
not very long.  This test is applied to the simulation of tidal current due to the surface slope
between two neighboring surface elevations.  The original data set was divided into four
quarters.  Two quarters were used to perform the training, one quarter was used to conduct the
cross-validation, and the remaining one quarter was used to generate the missing window
(testing).  Four combinations (Table 3) with the sequences of training, cross-validation, and
testing (missing window) were investigated by checking the performance due to the location of
the missing window.  The highlighted correlations in Table 3 show very satisfactory
performance.  The analysis indicated that this is due  primarily to  the pattern similarity between
the data from Quarters 2 and 4.  The pattern for data from Quarter 1 is quite different from the
other quarters.  Therefore, the pattern similarities are still the major factor to assure the good
performance for missing data recovery.  It is not because of the order of data representation
during the learning processes.
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Table 3. Recovery reliability of tidal current (surface slope) due to the location of missing
window (correlation coefficient and NMSE(cm))

_____________________________________________________________________________
 Data Representation (quarters)        Training          Cross-Validation    Missing Window
        Tr         C-V Te      
       1, 2          3            4                0.930(0.140)            0.924(0.152)                  0.971(0.065)
       1, 4          2            3                0.914(0.171)            0.972(0.056)                  0.919(0.158)
       3, 4          1            2        0.952(0.095)            0.898(0.300)       0.978(0.055)
       2, 3          4            1                0.976(0.046)            0.967(0.071)       0.916(0.219)

CONCLUSIONS: ANNs were used to simulate missing data recovery.  The partially recurrent
networks receive the best performance for a tidal lagoon system in the Biscayne Bay data
collection program.  The surface elevation is the easiest physical parameter for self-recovery,
neighboring station recovery, and multivariate recovery, while the conservative parameters, such
as salinity, are more difficult to recover due to the complex input system and their response
speed.  The mixture ANN approach may be the alternative to improve the solution.  The
performance due to missing window size is not only directly related the length of total data but
also associated with the initial portion of the simulation.  The data representation of assigning the
order of learning processes due to the missing window location is not significant.  The degree of
pattern similarity between the training data and the testing data determines the performance.

ADDITIONAL INFORMATION:  For further information, contact Dr. Bernard B. Hsieh
(Voice: 601-634-3679, e-mail: hsiehb@wes.army.mil or Mr. Thad C. Pratt (Voice:  601-634-
2959, e-mail:  prattt@wes.army.mil), U.S. Army Engineer Research and Development Center,
Coastal and Hydraulics Laboratory.  For information about the Coastal Inlets Research Program,
please contact Dr. Nicholas C. Kraus (Voice:  601-634-2016, e-mail:  krausn@wes.army.mil).
Any mention of a commercial product does not constitute an endorsement by the Federal
Government.  This CETN should be cited as follows:

Hsieh, B. B. and Pratt, T. C. (2001) “Field Data Recovery in Tidal System Using
Artificial Neural Networks (ANNs),” Coastal Engineering Technical Note CETN-
IV-__, U.S. Army Engineer Research and Development Center, Vicksburg, MS,
http://chl.wes.army.mil/library/publications/cetn/
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